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Abstract—We present a novel sketch-based system for gen-
erating digital bas-relief sculptures. All existing computational
methods for generating digital bas-reliefs first require the input
of a three-dimensional (3D) scene, thus preventing artists from
freely creating or exploring designs when 3D data are not
available. Motivated by this limitation, we propose a generative
adversarial network (GAN)-based sketch modeling system for
generating digital bas-reliefs from freehand user sketches (see
Figure 1,5). The basic tool underpinning the interface is a
conditional GAN (cGAN) that digitally learns a functional map
from a contour image to a 3D model for any given viewpoint
of the corresponding bas-relief model. When using our system
for designing bas-reliefs, the user only needs to draw 2D sketch
lines without having to designate any additional hints on the lines.
The interface returns bas-relief results in interactive time (500 ms
per bas-relief on average). We tested the quality and robustness
of our approach with extensive and comprehensive experiments.
By carefully analyzing the results, we verified that our system
can faithfully reconstruct bas-reliefs from a test dataset and can
generate completely new reliefs from raw amateur sketches.

Index Terms—Multimedia Sketching Interface, Shape Model-
ing, Bas-Relief Design, Generative Adversarial Neural Networks

I. INTRODUCTION

High relief Sunken relief Bas-relief 
A relief is a sculptural technique in which the sculpted

shapes are attached to a solid background, giving the visual

impression that the sculpted material has been raised above the

background plane. There are three major types of reliefs: high

reliefs, sunken reliefs and bas-reliefs (i.e., shallow reliefs), see

the figure above. Manually creating a bas-relief is cumbersome

and inefficient because the process entirely relies on the artist’s

three-dimensional spatial imagination and craftsmanship.

Over the past decade, several computational approaches that

can convert a three-dimensional (3D) model input into a digital

bas-relief have been successfully developed, e.g., [1]–[4]. In

one of the pioneering works, Weyrich et al. [1] proposed a

method for generating a digital bas-relief based on a given 3D

model using high-dynamic-range compaction, i.e., for the 3D

model at a specific viewpoint, its depth field is extracted and

used in a gradient domain compression procedure. The obvious

limitation of the aforementioned 3D model-based methods is

the requirement for an input 3D model, which sometimes

becomes problematic when designing a relief when there are

no corresponding 3D models available.

Input sketches 

Our Generative network 

Output bas-reliefs Our sketching Interface 

Fig. 1: We trained a deep neural network that enables users

to quickly generate realistic bas-relief meshes with simple 2D

sketches.
To work around this limitation, in this study, we focus on

developing a novel approach for generating digital bas-reliefs,

without the necessity of inputting any 3D models.Freehand

sketching is arguably one of the most accessible and efficient

means for expressing design ideas.It is not surprising that most

of the modeling software uses a sketch interface for the design

and manipulation of graphical content.The need for this type

of interface inspired us to develop a sketch-based interface

that is able to automatically infer a 3D bas-relief interpretation

from a random 2D conceptual sketch. We believe that such a

system is highly desirable for graphic designers since it not

only overcomes the 3D model limitation but also releases the

creativity of novice users, due to the concision and flexibility

enabled by freehand sketches.

Deep neural networks have been proven to be powerful

machine learning tools that enable a variety of applications

both in computer graphics and digital image processing.

Recent studies regarding deep learning have provided an

all-important method for image synthesis, which is termed

generative adversarial networks (GANs) [5]. Thus, in this

paper, we propose a GAN-based sketch-to-relief generation

system in which our neural network framework infers a 2D

height field for the bas-relief from the corresponding hand-

drawn sketches.
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We use a synthetic approach to prepare the training data.

Specifically, for a given 3D model, we extract its 2D salient

feature lines from suggestive contours, ridges, valleys, etc.,

from an extensive set of viewpoints. For the same set of

viewpoints, we use a highly efficient method to produce 2D

digital bas-relief models. We then train our network model by

using a large number of sketch images and the height field

maps of their corresponding relief models.

We demonstrate the stabilization of our method on large-

scale comparisons in both quantitative and qualitative experi-

ments. We illustrate the refined ability of our model to generate

low-error 2D height fields through comparisons with two other

methods, pix2pix [8] and that of Su et al. [9], evaluated via

three types of data sets. We demonstrate the stability and

accuracy of our model by calculating the L1 and L2 losses

of the original dataset against the generated 2D height field

value. We rely on the error graph to demonstrate the accuracy

of our model and evaluate the robustness of our approach

by gradually increasing the strokes of the input sketch. The

feasibility of our method is also measurable from the user’s

hand drawing. User research also proves that our approach has

an advantage from a user perception perspective.

To summarize, the research contributions emerging from

this work are the following: 1) constructing a sketching

interface for modeling bas-reliefs without the need for 3D

models; 2) incorporating a GAN-based neural network behind

the interface to convert 2D sketch images into bas-relief height

fields; 3) carefully analyzing the performance of the network

in terms of quality results; 4) a new dataset of sketch-relief for

benchmarking the performance of relief-related algorithms.

II. RELATED WORK

A. Digital bas-relief generation from 3D models

Digital bas-relief has attracted an increasing amount of

computer graphics research attention over the past decade. A

pioneering work [1] presented the first computational scheme

for transferring a depth field of a given 3D scene into a digital

bas-relief. The core of the approach is a Poisson equation that

reconstructs a height field based on a compressed divergence

field. Along with this line of work, several methods have been

proposed to convert a 3D scene into a bas-relief while incorpo-

rating other geometric information. For example, Alldrin et al.

[10] proposed a new prior on the albedo distribution, which

specified that the entropy of the distribution should be low.

This prior is justified by the fact that many objects in the real

world are composed of a small finite set of albedo values.

Sun et al. [2] presented methods to automatically generate

bas-reliefs based on an adaptive histogram equalization (AHE)

starting from an input height field. We will present the details

of bulk-producing bas-reliefs from 3D models as training data

for our deep neural network in Section IV-A.

B. Sketch-based modeling

Sketch-based modeling is a highly focused and productive

research field, and in the past, many remarkable results have

been achieved (see the survey in [11]). Based on the underlying

dataset, we can generally categorize the existing methods into

2 classes, direct sketch-based modeling and data-driven sketch-

based modeling.

For direct sketch-based modeling, the sketch is usually

regarded as the outer border of the potential 3D object. The

actual surface can be produced as an interpolation of the

geometrical information attached to the sketches, e.g., normals

and curvatures. For example, Igarashi et al. proposed Teddy

[12] as one of the earliest real-time interactive sketch modeling

interfaces. The concept of user sketch can also be extended

to 3D curves; e.g., [13] used 3D curves with an arbitrary

topology as handles to edit the precreated 3D shapes. Multi-

view sketching interfaces have also been developed; e.g., [14]

created topologically nontrivial 3D shapes using silhouettes

from multiple views.

For data-driven sketch-based modeling, the sketch can either

be used as a query to search the dataset for the optimal

shapes or retrieve partial candidates for assembling human-

made objects [15],or it can be used as a fitting target for

the deformable model to approximate. We rely on a GAN

to directly generate the bas-relief data without any template

shapes or the need to create an intermediate surface. The recent

rapid advancement of deep learning has provided sketch-

based image synthesis problem areas with new and effective

solutions. For example, Lun et al. [16] proposed a method for

reconstructing 3D shapes from 2D sketches of line drawings.

They converted multiple sketches into multiview maps, which

were then consolidated into a 3D shape. Su et al. [9] used

different perspectives of sketches as input to generate high-

quality normal maps in real time. Han et al. [17] built a sketch

interface for designing exaggerated 3D facial expressions,the

core algorithm of which is a two-branch CNN that drives

a bilinear human face morphable model. Although they also

treat user sketch as an image, their network outputs semantic

attribute as parameters to extract face instances from the

morphable model, while unlike them, we directly generate the

3D shape of the bas-relief.

C. Image translation

Traditional image translation effects are achieved by mech-

anisms based on handcrafted separate local image represen-

tations, e.g., image quilting [18], image analogies [19], and

image denoising [20]. Efros and Freeman [18] utilized a tex-

ture synthesis model for a corresponding input-output image

pair. More advanced approaches use a dataset of input-output

example pairs to learn a parametric translation function using

GANs [5]. Mirza and Osindero [6] proposed cGANs,adding

additional information to the random noise to generate images.

Improved techniques for training GANs by Salimans et

al. [21] present a number of new architectural features and

training procedures, e.g., matching feature and minibatch dis-

crimination to improve the generated images. Three mutations

of GANs are published at approximately the same time –

DualGAN [22], CycleGAN [23] and DiscoGAN [24] – all

propose symmetric cyclic networks that accurately convert

data domains in a bidirectional loops. Animesh et al. [30]
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Fig. 2: Our network structure. On the upper left of the figure are the input data of the generation network. We enter the sketch

into the generated model to obtain the generated false relief height field. We then extract the relief database to obtain the

corresponding relief height field (similar to a 2D image). The sketch and the real relief height field and the generated relief

height field are concatenated as the input feed to the discriminator network. In addition, we feed the real relief height field

together with the generated height field into the VGGNet [32] to compute the perceptual loss. When testing, the user only

needs to input the sketch into the generation network to obtain the final relief height field and then recover the generated height

field from the relief model.

propose a training technique for training GANs by allowing

the flow of gradients from the discriminator to the generator

at multiple scales. Yang et al. [31] present the first text style

transfer network that allows for real-time control of the crucial

stylistic degree of the glyph through an adjustable parameter.

Baris et al.

From a workflow point of view, our work is very similar

to [9], which is also inspired by pix2pix [8] presented by

Isola et al., because pix2pix proposed a general framework

for solving image-to-image reinterpretations via deep learning.

However, unlike [9], our method attempts to learn a reasonable

mapping from the sketch line to a 2D height field that often

contains many compressed geometric details. The nature of

the height field and the surface normal are clearly different.

Without positional information, it is impossible to recover the

surface solely from the normals. However, our solution directly

generates a 3D manifold surface, although it is very thin and

topologically simple.

III. METHODOLOGY

Since both the bas-relief and the contour sketch can be

seen as 2D images, we regard the sketch-to-relief problem as

an image-to-image translation process. Furthermore, treating

the user’s 2D sketches as images helps maintain a flexible

sketching interface to allow a user to draw any number of

lines. From a CNN point of view, the essence of the image-

to-image translation is to estimate the probability distributions

of two image domains. In our case, the input sketch images are

grayscale images, in which white pixels are the background,

and the output bas-relief images are also grayscale images,

in which the pixel value stands for a normalized height field.

In Section III-A, we first introduce the objective function of

our GAN. The architecture of our network is elaborated in

Section III-B and illustrated in Fig. 2.

A. Objective function

To reflect the constraints of sketch lines, we use a cGAN

[6] that maps a random noise vector z to an image y : z → y
that is constrained by the input condition x. We use cGAN

learns a Generator G that maps the input condition x to the

y:

G : x→ y (1)

Under the conditional settings, generator G and discriminator

D will approximate the conditional distribution of y onto

the distribution of the training data. For image translation

problems, feeding G with the input image guides the network

to generate more accurate output images, which is constrained
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to effectively reflect the condition data x, i.e., the sketch

image. According to Mirza et al. [6], the loss function used

in cGANs is defined as follows:

min
G

max
D

V (D,G) =Ex∼ps,y∼pn
[log(D(y|x))]

+ Ex∼ps,z∼pr
[log(1−D(G(z|x)))]

(2)

Again, y is the 2D height field of the corresponding bas-relief,

x represents the input sketch image,which is encoded to be the

latent space of the generator G. ps, pn represent the sketch

domain and bas-relief height field domain , respectively. How-

ever, Arjovsky and Bottou [28] proved that optimizing such

a loss function is similar to maximizing the Jensen-Shannon

divergence (JSD), but in fact, the JSD can’t effectively measure

the distribution of input and output. We use the WGAN-

GP objective function[29] during training. Consequently, we

modify our loss function in Eq. 3 as follows:

Loss =Ex∼ps,y∼pn
[D(y|x)]− Eỹ∼pg

[D(G(ỹ|x)]
− λL1

L1 − λV GGLV GG

(3)

Here, ỹ is the generated relief height field with respect to the

input sketch x from the generated bas-relief domain. To further

speed up the training of the network and improve the quality

of the generated data, we use LL1 (in Eq. 4) to calculate the

L1 distance between the generated picture and the original

picture, and we use the pretrained VGG network to calculate

the perceptual loss LV GG (in Eq. 5):

LL1 = Ey∼pn,ỹ∼pg [‖y − ỹ‖1] (4)

LV GG = Ey∼pn,ỹ∼pg
[γi‖Vi(y)− Vi(ỹ)‖1] (5)

ỹ = Ex∼ps,z∼pr [G(x|z)] (6)

Similar to Johnson et al. [27], we use VGGNet to com-

pute the perceptual loss to enforce deep feature consistency

between the output and the input images. Here, we use the L1

loss to calculate the difference between deep feature graphs.

Instead of only using a single layer features, we leverage visual

features at multiple scales and use the outputs of the five

convolutional layers of the VGGNet. γi =
∑5

i=1
100
C2

i
Li,where

Li are the feature perceptual loss and C2
i are the square of the

number of filters in each layer of the VGGNet.

B. Network structure

Our full structure of our network is presented in Figure 2.

The input is a 256*256 size sketch image (3-channel RGB

image). We then feed the sketch into the generator G. For

discriminator D, there are 5 layers, each consisting of con-

volution, batch normalization and leaky rectified linear units

(ReLUs) to process the data stream. For generator G, we adopt

an encoder-decoder architecture [28], which is a universal

choice based on image generation problems.

In image translation problems, many studies show that it is

beneficial to share low-level information between the input and

output, e.g., to directly interconnect the extracted information

over two distant layers. For example, we can easily observe

the input sketch and the bas-relief of the output share the

same boundary position. Since our generator G is symmetric,

we adopt a U-net structure, i.e., we add skip connections

over the generator G (see Figure 2). Specifically, we add skip

connections after the batch normalization in the generator G in

between each layer i and layer n−i, where n = 16 is the total

numbers of layers in G. These skip connections concatenate

all channels at layer i with those at layer n− i.

IV. TRAINING DATA

Since our design ideology of generating reliefs from 2D

draft sketches is rarely practiced in the real world, it would be

ineffective to obtain datasets from human artists. We instead

use a synthetic approach to build our training and test datasets.

A. Bas-reliefs

Our neural network requires a large number of bas-reliefs

with different viewpoints as training data. However, it is not

easy to find the data needed from online datasets. Manually

creating them one-by-one using inefficient software is also

impractical. Therefore, instead, we synthetically bulk-produce

a bas-relief dataset for a small collection of 3D models

using our previous graphics processing unit (GPU)-based relief

generation method.It follows the same mathematical workflow

as [1], but using a different high dynamic range (HDR)

compression function.

Specifically, for a given 3D scene(or a single 3D model),

we extract its depth field h(x, y) defined in a 2D rect-

angle screen domain π, and we compute the gradient of

depth g(x, y) = ∇(x, y). The gradient can be represented

as g(x, y) = ‖g‖ĝ(x, y), where ĝ denotes the unit vector.

For each point in π, we compress the magnitude of the

gradient vector while preserving its direction, i.e., g′(x, y) =
C(‖g(x, y)‖)ĝ(x, y), where C is a HDR compressing function

defined as:

C(x) =

{
α tan−1(βx) 0 ≤ x ≤ φthred ,

0 else .

The parameter α and β control the degree of compression over

different value ranges.

[1] uses the logarithmic function C ′ = 1
η ln(1+ηx) as their

compression function, where η is normally between 0.5 and

10; greater values corresponding to a stronger compression.

Throughout this paper, we use C(x) with α=1.5 and β=0.8.

Then, the compressed gradient g′ is used for computing the

divergence in the Poisson equation:{
Δr(x, y) = ∇ · g′ if (x, y) ∈ π
r(x, y) = 0 if (x, y) ∈ ∂π

(7)

The solution r(x, y) is the height field of the result bas-

relief. We implement the aforementioned algorithm on a GPU
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using framebuffer computing technology to obtain a relatively

high efficiency.

For fast bulk production, we run our program on an NVIDIA

GTX-2080Ti and make it automatically rotate the 3D model.

For each different viewpoint, its corresponding bas-relief is

computed on the GPU and saved on the hard drive as an

OBJ mesh file. In Table 1, we measure this normalization

error by computing a relative error E on the four types of

3D model groups.Based on the statistics, we conclude that

this quantization error is neglectable.

Table 1.
Relief-to-image-to-relief quantization error statistics. From each of the
four types of 3D model groups, we randomly choose 100 data point to
calculate their average error ratio. We observe that for all types of 3D
models, the ratio does not exceed five percent.

Dataset Teddy Chair Four legs Head

Error 4.11% 4.29% 4.65% 3.26%

B. Sketch images

To obtain the corresponding sketch images, we adopt sug-

gestive contours [29] as proposed by DeCarlo et al. to generate

line drawings directly from a 3D model with multiple views

that are exactly the same as those we use for generating bas-

reliefs. The size of the sketch image is also 256×256, the

same as the relief image.

Note that we also attempted the traditional data enhance-

ment methods, i.e., to mirror, flip and rotate a sketch-relief

image pair, to enlarge the diversity of the training data.

However, we find that trained networks exhibit no significant

change from such enhancement. The quality of the generated

results and the limitations remain the same.

V. RESULTS AND ANALYSIS

(a) (b) (c) (d) 

Fig. 3: Our dataset includes four types of 3D models.

We tested our approach on 4 types of 3D model groups:

(a) Four Legs, (b) Teddy, (c) Chairs and (d) Human Head, as

shown in the figure above. For each 3D model, we use 80%

of all 2500 views, i.e., 2000 sketch image + bas-reliefs image

pairs for training, and the remaining 500 views are used for

testing. In the testing phase, for better reflecting the robustness

of our model, we tested not only 3D models in the 4 groups

but also some 3D meshes outside the training data, see Fig. 11

and 5.It generally takes about 0.5s to generate one height field

image, and takes about 2s to convert it into a mesh file.

First, we show in Figure. 4 select test results using sketch

images from the test dataset. We can observe that most of the

generated reliefs faithfully reflect the shapes of the sketched

objects. When a sketch line is sparse and clean, the boundary

of its corresponding object in the relief is as well, whereas

when the lines become cluttered, those boundaries become

unsmooth or even broken, e.g., Figures 4 f4 and d6. We can

also notice a minor deviation in the viewing direction between

the sketch image and relief, e.g., Figure 4 f10.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 4: Bas-relief results generated by our system using sketch

images from the test dataset. For each column, the left side

is the sketch input, and the right side is the corresponding

rendered bas-relief model. From top to bottom, the results are

roughly organized in order of increasing complexity.

We also invited some amateur users to draw freehand

sketches to test our system; the results (see Figure 5) show that

the system can infer reasonable bas-reliefs with completely

new sketch inputs. Since we only use synthetic data as our

training data, it is not surprising to observe that the object

shape drawn by the users somehow morphed to approximate

the contour shape of the networks’ underlying 3D model types,

e.g., Figure 5 column6.

(1) (2) (3) (4) (5) (6) (7) (8)

(a)

(e)

(b)

(c)

(d)

Fig. 5: Result bas-reliefs generated from amateur user freehand

sketches using our system. From a1 to b1, b3 to c3, and d3 to

e3 the user adds sketch lines to update the results, while from

c1 to d1 the user erases a sketch line to do so.

An advantage of our system over the traditional methods

is that we allow the user to directly edit relief shape details

by simply drawing (see Figure 6) or removing (see Figure 5)

the detailed lines on the sketch image. In contrast, the tradi-

tional 3D model-based methods require the users to deform

or rebuild the 3D shape itself, which is inconvenient and

unintuitive.

A. Absolute Error

To analyze our network, we first compute the absolute pixel

error for each pair of generated relief image Hg and its
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Fig. 6: Interactive incremental refinements by adding addi-

tional strokes, which lead to additional geometry details in

the bas-relief. The modified strokes are marked with some red

circles.

corresponding ground truth image H from the test dataset.

The absolute error EA is defined as

EA =
∑
i

‖Hg
i −Hi‖ (8)

Figure 7 displays some example absolute error maps. In

each row, we show 4 different viewing directions within the

same 3D model type. Overall, the bas-relief generated by our

model accurately reflects the characteristics of the input sketch

and has correct boundaries. For area with salient line features,

i.e., a foreground object, the error becomes larger, especially

when the input 3D model exhibits obvious relief ambiguities

(see Figure 13). However, even in this case, the resulting

bas-relief has an acceptable quality because our training data

contain almost no ambiguous relief examples. The reason for

a pure background to have a nonzero error is because the

solution of the Poisson equation (see Section IV-A) can barely

maintain its zero value, except for those points right on the

domain border.

Fig. 7: Bas-reliefs generated with sketch in the test dataset;

their error maps are shown in the lower-right images of each

group. Each error map is independently normalized and color-

coded from pure white to pure red.

We compare our method with two closely related works:

pix2pix [8], Su et al. [9].We train the pix2pix [8] and Su et

al. [9] directly using our dataset. Note that Su et al. [9] aims

at generating vectorial normal maps which can accept point

mask constraints. While in our case of generating relief height

field we need no extra input other than sketch lines, reducing

the dimensionality of input.

Because we are essentially generating images, we compute

the difference between the resulting image and its ground truth

using the L1 and L2 versions of the absolute error EA. The

quantitative results are reported in Table V-A.

Table 2.
The absolute errors EA (see Equation V-A) relative to the ground truth
image for 3 different methods: pix2pix [8],Su et al. [9] and ours. All the
values here are the average error over all test images from 3D model
types (a) Four Legs and (c) Chairs.

Dataset Loss Type pix2pix Su et al. Ours

Chair
L1 972802 528663 302047
L2 5095.18 3066.03 1874.38

Four Legs
L1 488801 392177 269373
L2 2644.77 2113.34 1519.33

To further demonstrate the difference in the results produced

by the different methods, we visually compare the error maps

generated by different methods in Figure 8. It can be observed,

more intuitively, that our method produces fewer errors than

pix2pix [8] and the method from Su et al. [9]. Our network fits

better on the boundaries of the objects, producing bas-reliefs

with smoother contours.

Fig. 8: Visualization of the EA error maps of the different

methods. We selected four examples from the test dataset for

each group.

B. Relative Error

To further analyze the ability and quality of describing a

compressed 3D shape by our generative neural network, we

need to precisely measure the actual shape-wise loss on the

generated reliefs. However, the absolute error EA indiscrimi-

nately totals all the pixels, including the blank area where no

relief object exists; nevertheless, the visual quality of a bas-

relief is primarily determined by the actual projection area of

the 3D model, especially by its contour regions. Furthermore,

EA only computes local pixelwise differences, which do not
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reflect the variation in the geometric detail variations of the

relief surface. To measure the real shape-wise loss of the

generated relief, we define the relative pixel error ER based

on the Laplacian operator:

E =

∑
i εi

Arelief
(9)

Arelief is the size of the area with most salient relief

shape variation; see Figure 9. To correctly compute Arelief ,

we need to carefully exclude blank areas, which often contain

very minor value fluctuations that drift it slightly away from

the base plane, leading to accumulated error. To this end, we

define εi using thresholding of the gradient and height:

εi =

{ |ΔHg
i −ΔHi| if ‖∇Hi‖1 > γ1 or |Hi −Hbase| > γ2

0, i �∈ Arelief else
(10)

where ΔHi = Hright+Hleft+Htop+Hdown−4×Hi,∇Hi =
(Hright − Hi, Htop + Hi). For all examples, we set γ1 =
3.8, γ2 = 38.

Fig. 9:From left to right: sketch image; salient region Arelief

(shown in black); relative error map, i.e., EA; generated relief.

      a1 

      a2 

      a3 

      a4 

   b1 

      b4 

      b3 

      b2 

      c1 

      c3 

     c4 

      c2 

Fig. 10: Sorted relative error curve. For each 3D model type,

we compute the pixel-wise laplace loss,i.e.,ER for 1000 test

data and display 4 representative results from the largest error

to the smallest error.

We test 1000 data points from the Teddy, Four Legs and

Chair 3D model types and sorted their relative error ER as

a plot; see Figure. 10. The common trend of the 3 curves

clearly shows that the more the contour lines overlap with

each other, the larger ER becomes, e.g., Figure. 10 a1, b1

and c1; When the number of sketch lines decreases or the

average distance of the lines becomes larger, ER decreases.

Interestingly, as the error decreases, the input sketch becomes

closer to the common viewing direction that we usually choose

for manually creating a bas-relief. Another similar conclusion

is that the less ambiguous the bas-relief is with respect to its

corresponding sketch image, the smaller the error value is.

In Figure. 11 we test our networks using suggestive contours

of 3D models that are not contained in our training set. For the

first two columns we use animals that are not in group (a) Four

Legs, and for the third and fourth columns we use teddy bears

with poses different from the group (b) Teddy. We can see that

even though the input sketches are with totally new shapes and

posed that are not inside the training set, the predicted bas-

reliefs are still very convincing. In the last column we use

a sketch from [16] that has large discrepancy both in shape

and topology against our group(c) Chairs, our network cannot

continue to output height field with high accuracy. This implies

that topology seems to have more impact on the consistency

with the distribution of the training data than pose and shape.

Fig. 11: Results using sketches of 3D models not contained

in our training set. Note here the teddy bears are with totally

new poses. The last sketch is from [16].

We also test our network on completely new freehand line

drawings created by amateur users, shown in Figure. 5.Our

network can accurately generate visually realistic bas-reliefs

for most user-entered sketches.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we propose a novel sketching interface to

generate bas-relief models. Underlying the interface is a GAN

trained from synthetic contour images and relief height field

data. Our generation network uses a structure similar to the

U-Net network [7]. For the loss function, we use WGAN GP

[26] to reduce the gradient by measuring the Wasserstein

distance. We introduce VGG19 to calculate the perceptual loss,

enabling the network to converge more quickly and smoothly

for the resulting picture. The experiments show that our net-

work can generate not only rotund 3D objects but also highly

articulated objects, such as chairs and tigers; see Figure 9

and 4. We also invited amateur users to draw completely

new sketches, and our system could still produce reasonable

results; see Figure 5. In summary, our GAN framework is

more stable than pix2pix [8] and Su et al. [9], and is more

suitable for relief height field generation than [16].
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Fig. 12: Failure cases: unsatisfactory results are generated

when the input sketches exhibit severe overlap, preventing

the network from extracting and generating an accurate height

field. Furthermore, these input sketches are often from very

singular viewpoints that are seldom chosen by real artists.

a b d e c 
Fig. 13: Relief Ambiguity: A hemisphere surface (a) and its

inverted version (b) share the same contour line, i.e., a circle

(c), under the top-down vertical view direction. However, they

generate different bas-relief surfaces in (d) and (e),respectively.

The sideviews of the height field are also displayed at the

bottoms of (d) and (e); the x-axis in the small coordinate cross

represents the XOY plane, i.e., Z = 0.

The limitations of our approach are:1) Due to the limited

image resolution,when the sketch lines have high density,

the results tends to contain unsatisfactory surfaces; see Fig-

ure 12.The reason is that in these cases, even the training data

are not very neatly shaped. When the input sketch has a com-

plex form, the network may generate a discontinuous height

field. As the features of the sketch become too condensed, the

network may be too confused to correctly infer the underlying

structure of the shape. 2) Our networks do not learn a unified

mapping function for all types of the 3D models, which is

a situation that we want to improve by introducing transfer

learning in the future.
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